NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2

In this chapter, we provide NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 for English medium students, Which will very helpful for every student in their exams. Students can download the latest NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 pdf, free NCERT solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Ex 5.2 book pdf download.

BoardCBSE
TextbookNCERT
ClassClass 12
SubjectMaths
ChapterChapter 5
Chapter NameContinuity and Differentiability
ExerciseEx 5.2
Number of Questions Solved10
CategoryNCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability Exc  5.2

Differentiate the functions with respect to x in Questions 1 to 8.

Ex 5.2 Class 12 Maths Question 1.
sin(x² + 5)
Solution:
Let y = sin(x2 + 5),
put x² + 5 = t
y = sint
t = x²+5
frac { dy }{ dx } =frac { dy }{ dt } .frac { dt }{ dx }
frac { dy }{ dx } =cost.frac { dt }{ dx } =cos({ x }^{ 2 }+5)frac { d }{ dx } ({ x }^{ 2 }+5)
= cos (x² + 5) × 2x
= 2x cos (x² + 5)

Ex 5.2 Class 12 Maths Question 2.
cos (sin x)
Solution:
let y = cos (sin x)
put sinx = t
∴ y = cost,
t = sinx
frac { dy }{ dx } =-sinquad t,frac { dt }{ dx } =cosquad x
frac { dy }{ dx } =frac { dy }{ dt } .frac { dt }{ dx } =(-sint)times cosx
Putting the value of t, frac { dy }{ dx } =-sin(sinx)times cosx
frac { dy }{ dx } =-[sin(sinx)]cosx

Ex 5.2 Class 12 Maths Question 3.
sin(ax+b)
Solution:
let = sin(ax+b)
put ax+bx = t
∴ y = sint
t = ax+b
frac { dy }{ dt } =cost,frac { dt }{ dx } =frac { d }{ dx } (ax+b)=a
Nowfrac { dy }{ dx } =frac { dy }{ dt } .frac { dt }{ dx } =costtimes a=acosquad t
frac { dy }{ dx } =acos(ax+b)

Ex 5.2 Class 12 Maths Question 4.
sec(tan(√x))
Solution:
let y = sec(tan(√x))
by chain rule
frac { dy }{ dx } =sec(tansqrt { x } )tan(tansqrt { x } )frac { d }{ dx } (tansqrt { x } )
frac { dy }{ dx } =sec(tansqrt { x } ).tan(tansqrt { x } ){ sec }^{ 2 }sqrt { x } .frac { 1 }{ 2sqrt { x } }

Ex 5.2 Class 12 Maths Question 5.
\ frac { sin(ax+b) }{ cos(cx+d) }
Solution:
y = \ frac { sin(ax+b) }{ cos(cx+d) } = \ frac { v }{ u }
u = sin(ax+b)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 5
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 5.1

Ex 5.2 Class 12 Maths Question 6.
cos x³ . sin²(x5) = y(say)
Solution:
Let u = cos x³ and v = sin² x5,
put x³ = t
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 6

Ex 5.2 Class 12 Maths Question 7.
2sqrt { cot({ x }^{ 2 }) } =y(say)
Solution:
2sqrt { cot({ x }^{ 2 }) } =y(say)
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 7

Ex 5.2 Class 12 Maths Question 8.
cos(√x) = y(say)
Solution:
cos(√x) = y(say)
frac { dy }{ dx } =frac { d }{ dx } cosleft( sqrt { x } right) =-sinsqrt { x } .frac { dsqrt { x } }{ dx }
=-sinsqrt { x } .frac { 1 }{ 2 } { (x) }^{ -frac { 1 }{ 2 } }=frac { -sinsqrt { x } }{ 2sqrt { x } }
vedantu class 12 maths Chapter 5 Continuity and Differentiability 8

Ex 5.2 Class 12 Maths Question 9.
Prove that the function f given by f (x) = |x – 1|,x ∈ R is not differential at x = 1.
Solution:
The given function may be written as
f(x)=begin{cases} x-1,quad ifquad xge 1 \ 1-x,quad ifquad x<1 end{cases}
R.H.Dquad atquad x=1quad =underset { hrightarrow 0 }{ lim } frac { f(1+h)-f(1) }{ h }

Ex 5.2 Class 12 Maths Question 10.
Prove that the greatest integer function defined by f (x)=[x], 0 < x < 3 is not differential at x = 1 and x = 2.
Solution:
(i) At x = 1
R.H.D=underset { hrightarrow 0 }{ lim } frac { f(1+h)-f(1) }{ h }
NCERT Solutions for Class 12 Maths Chapter 5 Continuity and Differentiability 10

All Chapter NCERT Solutions For Class12 Maths

—————————————————————————–

All Subject NCERT Solutions For Class12

*************************************************

Remark:

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share Careerkundali.in to your friends.

Best of Luck!!

Leave a Comment

Your email address will not be published. Required fields are marked *