# NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

In this chapter, we provide NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 for English medium students, Which will very helpful for every student in their exams. Students can download the latest NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 pdf, free NCERT solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4 book pdf download.

## NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.4

Integrate the functions in exercises 1 to 23

Ex 7.4 Class 12 Maths Question 1.
$frac { { 3x }^{ 2 } }{ { x }^{ 6 }+1 }$
Solution:
Let x3 = t ⇒ 3x²dx = dt
$int { frac { { 3x }^{ 2 } }{ { x }^{ 6 }+1 } dx } =int { frac { dt }{ { t }^{ 2 }+1 } } ={ tan }^{ -1 }t+c$
= tan-1 (x3)+c

Ex 7.4 Class 12 Maths Question 2.
$frac { 1 }{ sqrt { 1+{ 4x }^{ 2 } } }$
Solution:
$frac { 1 }{ 2 } int { frac { dx }{ sqrt { frac { 1 }{ 4 } +{ x }^{ 2 } } } } =frac { 1 }{ 2 } int { frac { dx }{ sqrt { { left( frac { 1 }{ 2 } right) }^{ 2 }+{ x }^{ 2 } } } }$
$=frac { 1 }{ 2 } logleft| 2x+sqrt { 1+{ 4x }^{ 2 } } right| +c$

Ex 7.4 Class 12 Maths Question 3.
$frac { 1 }{ sqrt { { (2-x) }^{ 2 }+1 } }$
Solution:
put (2-x)=t
so that -dx=dt
⇒ dx=-dt
$int { frac { dx }{ sqrt { { (2-x) }^{ 2 }+1 } } } =-int { frac { dt }{ sqrt { { t }^{ 2 }+1 } } } =-log|t+sqrt { { t }^{ 2 }+1 } |+c$
$=logleft| frac { 1 }{ (2-x)+sqrt { { x }^{ 2 }-4x+5 } } right| +c$

Ex 7.4 Class 12 Maths Question 4.
$frac { 1 }{ sqrt { 9-{ 25x }^{ 2 } } }$
Solution:
$int { frac { dx }{ sqrt { 9-{ 25x }^{ 2 } } } } =frac { 1 }{ 5 } int { frac { dx }{ sqrt { { left( frac { 3 }{ 5 } right) }^{ 2 }-{ x }^{ 2 } } } }$
$=frac { 1 }{ 5 } { sin }^{ -1 }left( frac { x }{ frac { 3 }{ 5 } } right) +cquad =frac { 1 }{ 5 } { sin }^{ -1 }left( frac { 5x }{ 3 } right) +c$

Ex 7.4 Class 12 Maths Question 5.
$frac { 3x }{ 1+{ 2x }^{ 4 } }$
Solution:
Put x²=t,so that 2x dx=dt
⇒x dx = $frac { dt }{ 2 }$
$therefore int { frac { 3x }{ 1+{ 2x }^{ 4 } } dx } =frac { 1 }{ 2 } int { frac { dt }{ 1+{ 2t }^{ 2 } } } =frac { 3 }{ 4 } int { frac { dt }{ { left( frac { 1 }{ sqrt { 2 } } right) }^{ 2 }+{ t }^{ 2 } } }$
$=frac { 3 }{ 2sqrt { 2 } } { tan }^{ -1 }(sqrt { 2t } )+cquad =frac { 3 }{ 2sqrt { 2 } } { tan }^{ -1 }(sqrt { { 2x }^{ 2 } } )+c$

Ex 7.4 Class 12 Maths Question 6.
$frac { { x }^{ 2 } }{ 1-{ x }^{ 6 } }$
Solution:
put x3 = t,so that 3x²dx = dt
$int { frac { { x }^{ 2 } }{ 1-{ x }^{ 6 } } dx } quad =frac { 1 }{ 3 } int { frac { dt }{ 1-{ t }^{ 2 } } quad =frac { 1 }{ 6 } log } left| frac { 1+t }{ 1-t } right| +c$
$=frac { 1 }{ 6 } logleft| frac { 1+{ x }^{ 3 } }{ 1-{ x }^{ 3 } } right| +c$

Ex 7.4 Class 12 Maths Question 7.
$frac { x-1 }{ sqrt { { x }^{ 2 }-1 } }$
Solution:
$I=int { frac { x-1 }{ sqrt { { x }^{ 2 }-1 } } dx } -int { frac { 1 }{ sqrt { { x }^{ 2 }-1 } } dx } ,I={ I }_{ 1 }-{ I }_{ 2 }$
put x²-1 = t,so that 2x dx = dt

Ex 7.4 Class 12 Maths Question 8.
$frac { { x }^{ 2 } }{ sqrt { { x }^{ 6 }+{ a }^{ 6 } } }$
Solution:
put x3 = t
so that 3x2dx = dt
$I=frac { 1 }{ 3 } int { frac { dt }{ { t }^{ 2 }+{ { (a }^{ 3 }) }^{ 2 } } =frac { 1 }{ 3 } logleft| t+sqrt { { t }^{ 2 }+{ a }^{ 6 } } right| +c }$
$=frac { 1 }{ 3 } log|{ x }^{ 3 }+sqrt { { a }^{ 6 }+{ x }^{ 6 } } |+c$

Ex 7.4 Class 12 Maths Question 9.
$frac { { sec }^{ 2 }x }{ sqrt { { tan }^{ 2 }x+4 } }$
Solution:
let tanx = t
sec x²dx = dt
$I=int { frac { dt }{ sqrt { { t }^{ 2 }+{ (2) }^{ 2 } } } } =log|t+sqrt { { t }^{ 2 }+4 } |+c$
$=log|tanx+sqrt { { tan }^{ 2 }x+4 } |+c$

Ex 7.4 Class 12 Maths Question 10.
$frac { 1 }{ sqrt { { x }^{ 2 }+2x+2 } }$
Solution:
$int { frac { 1 }{ sqrt { { x }^{ 2 }+2x+2 } } dx } =int { frac { dx }{ sqrt { { (x+1) }^{ 2 }+1 } } }$
$=log|(x+1)+sqrt { { x }^{ 2 }+2x+2 } |+c$

Ex 7.4 Class 12 Maths Question 11.
$frac { 1 }{ { 9x }^{ 2 }+6x+5 }$
Solution:
$int { frac { 1 }{ { 9x }^{ 2 }+6x+5 } } =frac { 1 }{ 9 } int { frac { dx }{ { left( x+frac { 1 }{ 3 } right) }^{ 2 }{ +left( frac { 2 }{ 3 } right) }^{ 2 } } }$
$=frac { 1 }{ 6 } { tan }^{ -1 }left( frac { 3x+1 }{ 2 } right) +c$

Ex 7.4 Class 12 Maths Question 12.
$frac { 1 }{ sqrt { 7-6x-{ x }^{ 2 } } }$
Solution:
$I=int { frac { dx }{ sqrt { { 4 }^{ 2 }-{ (x+3) }^{ 2 } } } } quad ={ sin }^{ -1 }left( frac { x+3 }{ 4 } right) +c$

Ex 7.4 Class 12 Maths Question 13.
$frac { 1 }{ sqrt { (x-1)(x-2) } }$
Solution:
$int { frac { 1 }{ sqrt { (x-1)(x-2) } } dx } =int { frac { dx }{ sqrt { { left( x-frac { 3 }{ 2 } right) }^{ 2 }-{ left( frac { 1 }{ 2 } right) }^{ 2 } } } }$
$=logleft| x-frac { 3 }{ 2 } +sqrt { { x }^{ 2 }-3x+2 } right| +c$

Ex 7.4 Class 12 Maths Question 14.
$frac { 1 }{ sqrt { 8+3x-{ x }^{ 2 } } }$
Solution:
$int { frac { dx }{ sqrt { 8+3x-{ x }^{ 2 } } } } =int { frac { dx }{ sqrt { 8-left( { x }^{ 2 }-3x right) } } }$
$=int { frac { dx }{ sqrt { { left( frac { sqrt { 41 } }{ 2 } right) }^{ 2 }-{ left( x-frac { 3 }{ 2 } right) }^{ 2 } } } } quad ={ sin }^{ -1 }left( frac { 2x-3 }{ sqrt { 41 } } right) +c$

Ex 7.4 Class 12 Maths Question 15.
$frac { 1 }{ sqrt { (x-a)(x-b) } }$
Solution:
$int { frac { dx }{ sqrt { (x-a)(x-b) } } } =int { frac { dx }{ { left( x-frac { a+b }{ 2 } right) }^{ 2 }-{ left( frac { a-b }{ 2 } right) }^{ 2 } } }$
$=logleft| left( x-frac { a+b }{ 2 } right) +sqrt { (x-a)(x-b) } right| +c$

Ex 7.4 Class 12 Maths Question 16.
$frac { 4x+1 }{ sqrt { { 2x }^{ 2 }+x-3 } }$
Solution:
$letquad I=int { frac { 4x+1 }{ sqrt { { 2x }^{ 2 }+x-3 } } } dx$
put 2x²+x-3=t
so that (4x+1)dx=dt
$letquad I=int { frac { 4x+1 }{ sqrt { { 2x }^{ 2 }+x-3 } } } dx$
$therefore I=int { frac { dt }{ sqrt { t } } } ={ 2t }^{ frac { 1 }{ 2 } }+cquad =2sqrt { { 2x }^{ 2 }+x-3 } +c$

Ex 7.4 Class 12 Maths Question 17.
$frac { x+2 }{ sqrt { { x }^{ 2 }-1 } }$
Solution:
$int { frac { x+2 }{ sqrt { { x }^{ 2 }-1 } } dx } quad =int { frac { x }{ sqrt { { x }^{ 2 }-1 } } dx } +int { frac { 2 }{ sqrt { { x }^{ 2 }-1 } } dx }$

Ex 7.4 Class 12 Maths Question 18.
$frac { 5x-2 }{ 1+2x+{ 3x }^{ 2 } }$
Solution:
put 5x-2=A$frac { d }{ dx }$(1+2x+3x²)+B
⇒ 6A=5, A=$frac { 5 }{ 6 }-2=2A+B$, B=$-frac { 11 }{ 3 }$

Ex 7.4 Class 12 Maths Question 19.
$frac { 6x+7 }{ sqrt { (x-5)(x-4) } }$
Solution:
$int { frac { 6x+7 }{ sqrt { (x-5)(x-4) } } dx } =int { frac { (6x+7)dx }{ sqrt { { x }^{ 2 }-9x+20 } } }$

Ex 7.4 Class 12 Maths Question 20.
$frac { x+2 }{ sqrt { 4x-{ x }^{ 2 } } }$
Solution:
$I=int { frac { x-2 }{ sqrt { 4-{ (x-2) }^{ 2 } } } dx+4int { frac { dx }{ sqrt { 4-{ (x-2) }^{ 2 } } } } }$

Ex 7.4 Class 12 Maths Question 21.
$frac { x+2 }{ sqrt { { x }^{ 2 }+2x+3 } }$
Solution:
$I=frac { 1 }{ 2 } int { frac { 2x+2 }{ sqrt { { x }^{ 2 }+2x+3 } } dx }$

Ex 7.4 Class 12 Maths Question 22.
$frac { x+3 }{ { x }^{ 2 }-2x-5 }$
Solution:
$I=frac { 1 }{ 2 } int { frac { 2x-2 }{ { x }^{ 2 }-2x-5 } dx } +int { frac { dx }{ { x }^{ 2 }-2x-5 } }$

Ex 7.4 Class 12 Maths Question 23.
$frac { 5x+3 }{ sqrt { { x }^{ 2 }+4x+10 } }$
Solution:
$I=int { frac { frac { 5 }{ 2 } (2x+4)+(3-10) }{ sqrt { { x }^{ 2 }+4x+10 } } dx }$

Ex 7.4 Class 12 Maths Question 24.
$int { frac { dx }{ { x }^{ 2 }+2x+2 } equals }$
(a) xtan-1(x+1)+c
(b) (x+1)tan-1x+c
(c) tan-1(x+1)+c
(d) tan-1x+c
Solution:
(b) $letquad I=int { frac { dx }{ { x }^{ 2 }+2x+2 } } =int { frac { dx }{ (x+1)^{ 2 }+1 } }$
= (x+1)tan-1x+c

Ex 7.4 Class 12 Maths Question 25.
$int { frac { dx }{ sqrt { 9x-{ 4x }^{ 2 } } } equals }$
(a) $frac { 1 }{ 9 } { sin }^{ -1 }left( frac { 9x-8 }{ 8 } right) +c$
(b) $frac { 1 }{ 2 } { sin }^{ -1 }left( frac { 8x-9 }{ 9 } right) +c$
(c) $frac { 1 }{ 3 } { sin }^{ -1 }left( frac { 9x-8 }{ 8 } right) +c$
(d) ${ sin }^{ -1 }left( frac { 9x-8 }{ 9 } right) +c$
Solution:
(b) $int { frac { dx }{ sqrt { 9x-{ 4x }^{ 2 } } } } =frac { 1 }{ 2 } left[ frac { dx }{ sqrt { left( frac { 9 }{ 8 } right) ^{ 2 }-left[ { x }^{ 2 }-{ frac { 9 }{ 4 } }x+left( frac { 9 }{ 8 } right) ^{ 2 } right] } } right]$
$frac { 1 }{ 2 } { sin }^{ -1 }left( frac { 8x-9 }{ 9 } right) +c$

All Chapter NCERT Solutions For Class12 Maths

—————————————————————————–

All Subject NCERT Solutions For Class12

*************************************************

Remark:

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share Careerkundali.in to your friends.

Best of Luck!!