NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.2

In this chapter, we provide NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.2 for English medium students, Which will very helpful for every student in their exams. Students can download the latest NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.2 pdf, free NCERT solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.2 book pdf download.

BoardCBSE
TextbookNCERT
ClassClass 12
SubjectMaths
ChapterChapter 9
Chapter NameDifferential Equations
ExerciseEx 9.2
Number of Questions Solved12
CategoryNCERT Solutions

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.2

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation

Ex 9.2 Class 12 Maths Question 1.
y={ e }^{ x }+1:{ y }^{ II }-{ y }^{ I }=0
Solution:
y={ e }^{ x }+1:{ y }^{ II }-{ y }^{ I }=0
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 1

Ex 9.2 Class 12 Maths Question 2.
y=x^{ 2 }+2x+c:{ y }^{ I }-2x-2=0
Solution:
y=x^{ 2 }+2x+c:{ y }^{ I }-2x-2=0
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 2

Ex 9.2 Class 12 Maths Question 3.
y=cosx+c:{ y }^{ I }+sinx=0
Solution:
y=cosx+c:{ y }^{ I }+sinx=0
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 3

Ex 9.2 Class 12 Maths Question 4.
y=sqrt { 1+{ x }^{ 2 } } :{ y }^{ I }=frac { xy }{ 1+{ x }^{ 2 } }
Solution:
y=sqrt { 1+{ x }^{ 2 } } :{ y }^{ I }=frac { xy }{ 1+{ x }^{ 2 } }
vedantu class 12 maths Chapter 9 Differential Equations 4

Ex 9.2 Class 12 Maths Question 5.
y=Ax:x{ y }^{ I }=y(xneq 0)
Solution:
y=Ax:x{ y }^{ I }=y(xneq 0)
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 5

Ex 9.2 Class 12 Maths Question 6.
y=xquad sinx;{ xy }^{ I }=y+xsqrt { { x }^{ 2 }-{ y }^{ 2 } } (xneq 0quad andquad x>yquad orquad x<-y)
Solution:
y=xquad sinx;{ xy }^{ I }=y+xsqrt { { x }^{ 2 }-{ y }^{ 2 } } (xneq 0quad andquad x>yquad orquad x<-y)
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 6

Ex 9.2 Class 12 Maths Question 7.
xy = logy + C,
UP Board Solutions for Class 12 Maths Chapter 9 Differential Equations 7
Solution:
xy = logy + C,
UP Board Solutions for Class 12 Maths Chapter 9 Differential Equations 7
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 7

Ex 9.2 Class 12 Maths Question 8.
y-cosy=x:(ysiny+cosy+x){ y }^{ I }=y
Solution:
y-cosy=x:(ysiny+cosy+x){ y }^{ I }=y
vedantu class 12 maths Chapter 9 Differential Equations 8

Ex 9.2 Class 12 Maths Question 9.
x+y={ ta }n^{ -1 }y;{ y }^{ 2 }{ y }^{ I }+{ y }^{ 2 }+1=0
Solution:
x+y={ ta }n^{ -1 }y;{ y }^{ 2 }{ y }^{ I }+{ y }^{ 2 }+1=0
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 9
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations 9.1

Ex 9.2 Class 12 Maths Question 10.
y=sqrt { { a }^{ 2 }-{ x }^{ 2 } } xin (-a,a);x+yfrac { dy }{ dx } =0,(yneq 0)
Solution:
y=sqrt { { a }^{ 2 }-{ x }^{ 2 } } xin (-a,a);x+yfrac { dy }{ dx } =0,(yneq 0)
vedantu class 12 maths Chapter 9 Differential Equations 10

Ex 9.2 Class 12 Maths Question 11.
The number of arbitrary constants in the general solution of a differential equation of fourth order are:
(a) 0
(b) 2
(c) 3
(d) 4
Solution:
(b) The general solution of a differential equation of fourth order has 4 arbitrary constants.
Because it contains the same number of arbitrary constants as the order of differential equation.

Ex 9.2 Class 12 Maths Question 12.
The number of arbitrary constants in the particular solution of a differential equation of third order are:
(a) 3
(b) 2
(c) 1
(d) 0
Solution:
(d) Number of arbitrary constants = 0
Because particular solution is free from arbitrary constants.

All Chapter NCERT Solutions For Class12 Maths

—————————————————————————–

All Subject NCERT Solutions For Class12

*************************************************

Remark:

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share Careerkundali.in to your friends.

Best of Luck!!

Leave a Comment

Your email address will not be published. Required fields are marked *