# NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4

In this chapter, we provide NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 for English medium students, Which will very helpful for every student in their exams. Students can download the latest NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 pdf, free NCERT solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4 book pdf download.

## NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Ex 9.4

For each of the following D.E in Q. 1 to 10 find the general solution:

Ex 9.4 Class 12 Maths Question 1.
$frac { dy }{ dx } =frac { 1-cosx }{ 1+cosx }$
Solution:
$frac { dy }{ dx } =frac { 1-cosx }{ 1+cosx }$
$frac { dy }{ dx } =frac { 1-cosx }{ 1+cosx } =frac { { 2sin }^{ 2 }left( frac { x }{ 2 } right) }{ { 2cos }^{ 2 }left( frac { x }{ 2 } right) } ={ tan }^{ 2 }left( frac { x }{ 2 } right)$
integrating both sides, we get

Ex 9.4 Class 12 Maths Question 2.
$frac { dy }{ dx } =sqrt { 4-{ y }^{ 2 } } (-2
Solution:
$frac { dy }{ dx } =sqrt { 4-{ y }^{ 2 } } Rightarrow int { frac { dy }{ sqrt { { 4-y }^{ 2 } } } } =int { dx }$
$Rightarrow { sin }^{ -1 }frac { y }{ 2 } =x+C$
$Rightarrow y=2sin(x+C)$

Ex 9.4 Class 12 Maths Question 3.
$frac { dy }{ dx } +y=1(yneq 1)$
Solution:
$frac { dy }{ dx } +y=1Rightarrow int { frac { dy }{ y-1 } } =-int { dx }$
$Rightarrow log(y-1)=-x+cRightarrow y=1+{ e }^{ -x }.{ e }^{ c }$
$Hencequad y=1+{ Ae }^{ -x }$
which is required solution

Ex 9.4 Class 12 Maths Question 4.
sec² x tany dx+sec² y tanx dy = 0
Solution:
we have
sec² x tany dx+sec² y tanx dy = 0

Ex 9.4 Class 12 Maths Question 5.
$left( { e }^{ x }+{ e }^{ -x } right) dy-left( { e }^{ x }-{ e }^{ -x } right) dx=0$
Solution:
we have
$left( { e }^{ x }+{ e }^{ -x } right) dy-left( { e }^{ x }-{ e }^{ -x } right) dx=0$
Integrating on both sides

Ex 9.4 Class 12 Maths Question 6.
$frac { dy }{ dx } =left( { 1+x }^{ 2 } right) left( { 1+y }^{ 2 } right)$
Solution:
$frac { dy }{ { 1+y }^{ 2 } } =left( { 1+x }^{ 2 } right) dx$
integrating on both side we get
${ tan }^{ -1 }y={ x+frac { 1 }{ 3 } }x^{ 3 }+c$
which is required solution

Ex 9.4 Class 12 Maths Question 7.
y logy dx – x dy = 0
Solution:
$because quad yquad logyquad dx=xquad dyRightarrow frac { dy }{ yquad logy } =frac { dx }{ x }$
integrating we get

Ex 9.4 Class 12 Maths Question 8.
${ x }^{ 5 }frac { dy }{ dx } =-{ y }^{ 5 }$
Solution:
${ x }^{ 5 }frac { dy }{ dx } =-{ y }^{ 5 }Rightarrow int { { y }^{ -5 }dy } =-int { { x }^{ -5 }dx }$
$Rightarrow -frac { 1 }{ { y }^{ 4 } } =frac { 1 }{ { x }^{ 4 } } +4cRightarrow { x }^{ -4 }+{ y }^{ -4 }=k$

Ex 9.4 Class 12 Maths Question 9.
solve the following
$frac { dy }{ dx } ={ sin }^{ -1 }x$
Solution:
$frac { dy }{ dx } ={ sin }^{ -1 }xRightarrow int { dy } =int { { sin }^{ -1 }xdx }$
integrating both sides we get

Ex 9.4 Class 12 Maths Question 10.
${ e }^{ x }tanyquad dx+{ (1-e }^{ x }){ sec }^{ 2 }dy=0$
Solution:
${ e }^{ x }tanyquad dx+{ (1-e }^{ x }){ sec }^{ 2 }dy=0$
we can write in another form

Find a particular solution satisfying the given condition for the following differential equation in Q.11 to 14.

Ex 9.4 Class 12 Maths Question 11.
$left( { x }^{ 3 }+{ x }^{ 2 }+x+1 right) frac { dy }{ dx } ={ 2x }^{ 2 }+x;y=1,whenquad x=0$
Solution:
here
$dy=frac { { 2x }^{ 2 }+x }{ left( { x }^{ 3 }+{ x }^{ 2 }+x+1 right) } dx$
integrating we get

Ex 9.4 Class 12 Maths Question 12.
$xleft( { x }^{ 2 }-1 right) frac { dy }{ dx } =1,y=0quad whenquad x=2$
Solution:
$xleft( { x }^{ 2 }-1 right) frac { dy }{ dx } =1,y=0quad whenquad x=2$
$Rightarrow int { dy } =int { frac { dy }{ x(x+1)(x-1) } }$

Ex 9.4 Class 12 Maths Question 13.
$cosleft( frac { dy }{ dx } right) =a,(aepsilon R),y=1quad whenquad x=0$
Solution:
$cosleft( frac { dy }{ dx } right) =aquad therefore frac { dy }{ dx } ={ cos }^{ -1 }a$

Ex 9.4 Class 12 Maths Question 14.
$frac { dy }{ dx } =ytanx,y=1quad whenquad x=0$
Solution:
$frac { dy }{ dx } =ytanxRightarrow int { frac { dy }{ y } } =int { tanxquad dx }$
=> logy = logsecx + C
When x = 0, y = 1
=> log1 = log sec0 + C => 0 = log1 + C
=> C = 0
∴ logy = log sec x
=> y = sec x.

Ex 9.4 Class 12 Maths Question 15.
Find the equation of the curve passing through the point (0,0) and whose differential equation ${ y }^{ I }={ e }^{ x }sinx$
Solution:
${ y }^{ I }={ e }^{ x }sinx$
$Rightarrow dy={ e }^{ x }sinxquad dx$

Ex 9.4 Class 12 Maths Question 16.
For the differential equation $xyfrac { dy }{ dx } =(x+2)(y+2)$ find the solution curve passing through the point (1,-1)
Solution:
The differential equation is$xyfrac { dy }{ dx } =(x+2)(y+2)$
or xydy=(x + 2)(y+2)dx

Ex 9.4 Class 12 Maths Question 17.
Find the equation of a curve passing through the point (0, -2) given that at any point (pc, y) on the curve the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point
Solution:
According to the question $yfrac { dy }{ dx } =x$
$Rightarrow int { ydy } =int { xdx } Rightarrow frac { { y }^{ 2 } }{ 2 } =frac { { x }^{ 2 } }{ 2 } +c$
0, – 2) lies on it.c = 2
∴ Equation of the curve is : x² – y² + 4 = 0.

Ex 9.4 Class 12 Maths Question 18.
At any point (x, y) of a curve the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (-4,-3) find the equation of the curve given that it passes through (- 2,1).
Solution:
Slope of the tangent to the curve = $frac { dy }{ dx }$
slope of the line joining (x, y) and (- 4, – 3)

Ex 9.4 Class 12 Maths Question 19.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and offer 3 seconds it is 6 units. Find the radius of balloon after t seconds.
Solution:
Let v be volume of the balloon.

Ex 9.4 Class 12 Maths Question 20.
In a bank principal increases at the rate of r% per year. Find the value of r if Rs 100 double itself in 10 years
Solution:
Let P be the principal at any time t.
According to the problem

Ex 9.4 Class 12 Maths Question 21.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years
Solution:
Let p be the principal Rate of interest is 5%

Ex 9.4 Class 12 Maths Question 22.
In a culture the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000 if the rate of growth of bacteria is proportional to the number present
Solution:
Let y denote the number of bacteria at any instant t • then according to the question

Ex 9.4 Class 12 Maths Question 23.
The general solution of a differential equation $frac { dy }{ dx } ={ e }^{ x+y }$ is
(a) ${ e }^{ x }+{ e }^{ -y }=c$
(b) ${ e }^{ x }+{ e }^{ y }=c$
(c) ${ e }^{ -x }+{ e }^{ y }=c$
(d) ${ e }^{ -x }+{ e }^{ -y }=c$
Solution:
(a) $frac { dy }{ dx } ={ e }^{ x }.{ e }^{ y }Rightarrow int { { e }^{ -y }dy } =int { { e }^{ x }dx }$
$Rightarrow { e }^{ -y }={ e }^{ x }+kRightarrow { e }^{ x }+{ e }^{ -y }=c$

All Chapter NCERT Solutions For Class12 Maths

—————————————————————————–

All Subject NCERT Solutions For Class12

*************************************************

Remark:

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share Careerkundali.in to your friends.

Best of Luck!!